Chapter 2: Biological molecules

General learning outcomes:

- Describe how large biological molecules are made from smaller molecules
- **Describe** the structure and function of carbohydrates, lipids and proteins
- The study of biological molecules forms an important branch of biology known as molecular biology
 - Molecular biology is closely linked with **biochemistry**, which looks at the chemical reactions of biological molecules
 - o The sum total of all the biochemical reactions in the body is known as **metabolism**
 - o The structure of molecules are closely related to their functions

The building blocks of life

- 4 most common elements in living organisms are, in order of abundance, hydrogen, carbon, oxygen and nitrogen
 - They account for more than 99% of the atoms found in all living things
 - Carbon atoms can join together to form long chains or ring structures
 - Can be thought of as the basic skeletons of *organic molecules* to which groups of other atoms are attached
 - Organic molecules <u>always</u> contain carbon and hydrogen
- *See Figure 2.2 page 29

Monomers, polymers and macromolecules

- Macromolecule means giant molecule
 - 3 types of macromolecules in living organisms: polysaccharides, proteins (polypeptides)
 and nucleic acids (polynucleotides)
 - 'poly' means many; the above molecules are **polymers**, meaning that they are made of many repeating subunits that are similar or identical to each other
 - The subunits are referred to as **monomers**
 - They're joined together like beads on a string
 - Making polymers is relatively simple because the same reaction is repeated many times
 - Natural examples of polymers are cellulose and rubber
 - Industrially produced polymers include: polyester, polythene, PVC and nylon
 - These are all made up of carbon-based monomers and contain thousands of carbon atoms joined end to end

Carbohydrates

- All carbohydrates contain the elements carbon, hydrogen and oxygen.
- 'hydrate' refers to water
 - Hydrogen and oxygen atoms are present in the ratio of 2:1 in carbohydrates, as they are in water
- The general formula for a carbohydrate: C_x(H₂O)_y.

- Three main groups of carbohydrates: monosaccharides, disaccharides and polysaccharides
 - o 'saccharide" refers to a sugar or sweet substance

Monosaccharides

- Monosaccharides are sugars
 - Sugars dissolve easily in water to form sweet-tasting solutions
 - General formula: (CH₂O)_n
 - o Consist of a **single** sugar molecule; 'mono' means one
 - Main types of monosaccharides classified according to the number of carbon atoms in each molecule:
 - Trioses (3C)
 - Pentoses (5C)
 - Common examples: ribose and deoxyribose
 - Hexoses (6C)
 - Common examples: glucose, fructose and galactose
 - Names of all sugars end with -ose
- Molecular and structural formula
 - Formula (aka molecular formula) for a hexose: C₆H₁₂O₆
 - Structural formula shows the arrangements of the atoms in a molecule
 - *See Figure 2.3 page 30

Question: The formula for a hexose is $C_6H_{12}O_6$, or $(CH_2O)_6$. What would be the formula of:

- a. a triose?
- b. a pentose?
- Ring structures
 - Pentoses and hexoses have long enough chains of carbon atoms that they can close up on themselves and form more stable ring structures
 - o Figure 2.4 page 30
 - Two forms of the same chemical are known as **isomers**
- Roles of monosaccharides in living organisms
 - 2 Major functions:
 - Commonly used as a source of energy in respiration due to the larger number of carbon-hydrogen bonds
 - C-H bonds are broken to release energy which is transferred to help make ATP (adenosine triphosphate) from ADP (adenosine diphosphate) and phosphate
 - Most important in energy metabolism is glucose
 - Important as building blocks for larger molecules
 - Example: glucose is used to make the polysaccharides starch, glycogen and cellulose
 - Example: ribose (5C) is one of the molecules used to make RNA (ribonucleic acid) and ATP
 - Example: Deoxyribose (5C) is one of the molecules used to make DNA

Disaccharides

- Disaccharides are sugars
- Three most common disaccharides
 - Maltose (glucose + glucose)
 - Sucrose (glucose + fructose)
 - Transport sugar in plants and commonly bought in stores
 - Lactose (glucose + galactose)
 - Sugar found in milk and important in young mammals diets
- Formed when two monosaccharides are joined together
 - o process name is **condensation**
 - *See Figure 2.5
 - For each condensation reaction, two hydroxyl (-OH) groups line up alongside each other
 - One combines with a hydrogen atom from the other to form a water molecule
 - An oxygen 'bridge' forms between the two molecules, holding them together and forming a disaccharide
 - 'di' means two
 - The 'bridge' is called a glycosidic bond
 - since monosaccharides have many -OH groups, there are a large number of possible disaccharides
 - the shape of the enzyme controlling the reaction determines which -OH groups come alongside each other
 - Few of the possible disaccharides are common in nature
- The reverse of condensation is the addition of water, which is known as hydrolysis
 - Occurs during the digestion of disaccharides and polysaccharides when they are broken down to monosaccharides

Testing for the presence of sugars

- Reducing sugars include all monosaccharides (glucose) and some disaccharides (maltose)
 - Named because they can carry out the chemical reaction, reduction
 - In the process, reducing sugars are oxidized
 - Benedict's test using Benedict's reagent
 - Benedict's reagent is copper (II) sulfate in an alkaline solution (blue color)
 - Reducing sugars reduce soluble blue copper sulfate, containing copper (II) ions, to insoluble brick-red copper oxide (seen as a precipitate), containing copper (I).
 - reducing sugar + Cu²⁺ (blue) → oxidised sugar + Cu⁺ (red-brown)
 - Procedure
 - Add Benedict's reagent to the solution you are testing and heat in a water bath
 - If reducing sugars are present, solution color will change from green to yellow to orange to red-brown
 - color intensity is related to concentration of the reducing sugar
 - You can estimate the concentration by using color standards
- Non-reducing sugars sucrose
 - o Non-reducing sugars give a negative (blue) result for the Benedict's test
 - Non-reducing sugars test
 - Disaccharides are broken down by hydrolysis into two monosaccharides by heating the sugar solution with Hydrochloric acid (HCI)
 - The monosaccharides will be reducing sugars
 - Neutralize the solution by adding sodium hydroxide (NaOH)
 - Add Benedict's reagent and heat in a water bath
 - If the solution goes red but it didn't in the first part of the test, there is a non-reducing sugar present
 - If there is **still** no color change, no sugar of any kind is present

Questions

- A. Why do you need to use **excess** Benedict's reagent if you want to get an idea of the concentration of a sugar solution?
- B. Outline how you could use the Benedict's test to estimate the concentration of a solution of a reducing sugar.

Polysaccharides

- Polysaccharides are polymers whose subunits (monomers) are monosaccharides
 - Bonded together by glycosidic bonds due to condensation reactions
 - May be several thousand monosaccharides long
 - Most important polysaccharides: starch, glycogen, and cellulose
 - all are polymers of glucose
 - Polysaccharides are not sugars
- Glucose
 - is the main source of energy for cells
 - Too much glucose in cells would affect the osmotic properties of the cell
 - o is very reactive and can interfere with normal cell chemistry

- Glucose is converted to a polysaccharide (glycogen) by condensation reactions for storage
 - it's convenient, inert (unreactive), and insoluble
 - Storage polysaccharide in plants starch, humans glycogen

Starch

- is a mixture of amylose and amylopectin
 - Amylose is made by condensations between α-glucose molecules
 - Creates a long, unbranching chain of several thousand 1,4 linked glucose molecules
 - '1,4 linked' means they are linked between carbon atoms **1** and **4** of successive glucose units
 - Chains are curved and coil into helical structures making it more compact
 - Amylopectin is also made of many 1,4 linked α-glucose molecules
 - chains are shorter than in amylose and branch to the sides
 - branches are formed by 1,6 linkages
- Commonly found in chloroplasts and storage organs (potato tubers and seeds of cereals and legumes)
- Never found in animal cells

Glycogen

- o made of chains of 1,4 linked α-glucose with 1,6 linkages forming branches
- tend to be more branched than amylopectin molecules
- molecules clump together to form granules
 - visible in liver cells and muscle cells where they form an energy reserve

Question:

List **five** ways in which the molecular structures of glycogen and amylopectin are similar

- Cellulose
 - Most abundant organic molecule on the planet
 - o located in plant cell walls for structural support
 - o breaks down very slowly in nature
 - \circ is a polymer of β -glucose, not α -glucose
 - To form a glycosidic bond with carbon atom 4, -OH group is **below** the ring, one glucose molecule must be upside down (rotated 180°) relative to the other
 - Creates a strong molecule because the hydrogen atoms of -OH groups are weakly attracted to oxygen atoms in the same cellulose molecule (the oxygen of the glucose ring) and also to oxygen atoms of -OH groups in neighboring molecules
 - These are **hydrogen bonds** and they are weak
 - Form because of the large number of -OH groups
 - collectively provide significant strength
 - Between 60-70 cellulose molecules become tightly cross-linked to form bundles called microfibrils
 - held together in bundles called fibers by hydrogen bonding
 - o Cell walls have several layers of fibers running in different directions to increase strength

- o makes up 20-40% of the average cell wall
- o Cellulose fibers have high tensile strength, almost equal to that of steel
 - allows cells to withstand large pressures as a result of osmosis
 - Cells would burst without the wall in dilute solution
 - Pressures provide support for the plant and are responsible for cell expansion during growth
 - arrangement of fibers determine shape of the cell as it grows
 - cellulose fibers are freely permeable
 - allow water and solutes to reach or leave the cell surface membrane

Question:

Make a table to show **three** ways in which the molecular structures of amylose and cellulose differ.

Dipoles and hydrogen bonds

- **Covalent bonds** are when atoms in molecules are held together and a pair of electrons are shared with each other
 - o Example: water two hydrogen atoms each share a pair of electrons with an oxygen atom
 - in water, electrons are not shared absolutely equally
 - the oxygen atom gets slightly more than the hydrogen atoms and therefore has a small negative charge, written as δ (delta minus)
 - The hydrogen atoms get slightly less than their fair share and therefore have a small positive charge, written δ+ (delta plus)
 - This unequal distribution of charge is called a dipole
 - the negatively charged oxygen of one molecule is attracted to a positively charged hydrogen of another
 - this attraction is called a hydrogen bond
 - weaker than a covalent bond, but still has a very significant effect
- Dipoles occur in many different molecules, particularly wherever there is an -OH. -CO, or -NH group
 - Hydrogen bonds can form **between** these groups because the negatively charged part of one group is attracted to the positively charged part of another
 - these bonds are important in the structure and properties of carbohydrates and proteins
- Molecules that have groups with dipoles, such as sugars, are said to be **polar**
 - o attracted to water molecules, because water molecules also have dipoles
 - o such molecules are said to be hydrophilic (water loving) and tend to be soluble in water
- Molecules that do not have dipoles are said to be **non-polar**
 - they are not attracted to water and are **hydrophobic** (water hating)
- Polar and nonpolar molecules play an important role in the formation of cell membranes

- are all organic molecules which are insoluble in water
- fats are solid at room temp; oils are liquid at room temp
 - o chemically, they are very similar
- true lipids are esters formed by fatty acids combining with an alcohol

Fatty acids

- are a series of acids, some of which are found in fats (lipids)
- contain an acidic group -COOH aka a carboxyl group
- larger molecules have long hydrocarbon tails attached to the acid 'head' of the molecule
 - hydrocarbon tail consists of a chain of carbon atoms combined with hydrogen
 - o often 15-17 carbon atoms long
- tails of some fatty acids have double bonds between neighboring carbon atoms
 - o -C=C-
 - described as unsaturated
 - molecule doesn't contain the maximum amount of hydrogen possible
 - form unsaturated lipids
 - o double bonds make fatty acids and lipids melt more easily
 - most oils are unsaturated
 - more than one double bond is described as polyunsaturated
 - one double bond is **monounsaturated**
- animal lipids are often **saturated** (no double bonds)
 - occur as fats
- plant lipids are often unsaturated
 - o occur as oils (olive oil and sunflower oil)

Alcohols and esters

- alcohols are a series of organic molecules which contain a hydroxyl group, -OH, attached to a carbon atom
- glycerol is an alcohol with 3 hydroxyl groups
- acid + alcohol → ester
 - chemical link between acid and alcohol when the chemicals react is known as an ester bond or an ester linkage
 - -COOH group on the acid reacts with the -OH group on the alcohol forming the ester bond, -COO
 - condensation reaction (water is formed as a product)
 - can be reverted back into an acid and alcohol via hydrolysis (adding water)

Triglycerides

- most common lipid is triglycerides
 - o fats and oils
- glyceride is an ester formed by a fatty acid combining with the alcohol glycerol
 - o glycerol has 3 hydroxyl (-OH) groups
 - undergo condensation reactions with a fatty acid
 - when a triglyceride is made, the final molecule contains 3 fatty acids tails and 3 ester bonds ('tri' means 3)
 - tails can vary in length depending on the fatty acids used

- insoluble in water
- soluble in certain organic solvents
 - chloroform and ethanol
 - because of the non-polar nature of the hydrocarbon tails
 - no uneven distribution of electrical charge
- don't mix with water; hydrophobic (water hating)

Roles of triglycerides

- excellent energy reserves
 - rich in carbon-hydrogen bonds (more so than carbohydrates)
- Fat storage in humans is below the dermis of the skin and around the kidneys
 - o acts as an **insulator** against loss of heat
 - blubber (found in sea mammals) is a lipid with similar functions as well as providing buoyancy
- metabolic source of water
 - when oxidized in respiration, triglycerides are converted to carbon dioxide and water
 - water may be of importance in very dry habitats
 - example: desert kangaroo rat only survives on metabolic water from its fat intake

Phospholipids

- one end of the molecule is soluble in water
 - one of the 3 fatty acids is replaced by a phosphate group which is polar
 - can dissolve in water
 - phosphate group is hydrophilic (water loving)
 - makes the head of the phospholipid molecule hydrophilic
 - remaining fatty acid tails are still hydrophobic
- the above allows molecules to form a membrane around a cell
 - o hydrophilic heads lie in the watery solution on the outside of the membrane
 - hydrophobic tails form a layer that is impermeable to hydrophilic substances

Testing for the presence of lipids

- lipids are not soluble in water, but soluble in ethanol
 - o can be determined with the **emulsion test** for lipids
 - Procedure
 - substance thought to contain lipids is shaken vigorously with ethanol
 - allows lipids to dissolve in the ethanol
 - ethanol is then poured into a tube containing water
 - o if lipid is present, a cloudy white suspension is formed
- if no lipid is present, ethanol mixes with water
 - light can pass through the mixture; looks completely transparent
- if lipid is dissolved in ethanol, it cannot remain dissolved when mixed with water
 - o lipid molecules form tiny droplets throughout the liquid
 - this is called an **emulsion**
 - droplets reflect and scatter light; liquid looks white and cloudy