AS Biology

Chapter 2: Biological molecules

General learning outcomes:

- smaller molecules Describe how large biological molecules are made from
- **Describe** the structure and function of carbohydrates, lipids and proteins

Biological molecules intro

- The study of biological molecules forms an important branch of biology known as molecular biology
- 0 Molecular biology is closely linked with

of biological molecules biochemistry, which looks at the chemical reactions

- 0 The sum total of all the biochemical reactions in the body is known as metabolism
- Ο The structure of molecules are closely related to

Building blocks of life

- 4 most common elements in living organisms are, in order of abundance, hydrogen, carbon, oxygen and nitrogen
- They account for more than 99% of the atoms found in all living things
- 0 Carbon atoms can join together to form long chains or ring structures
- Can be thought of as the basic skeletons of organic *molecules* to which groups of other atoms are attached
- Organic molecules always contain carbon and hydrogen

Figure 2.3, page 30

Monomers, polymers and macromolecules

- Macromolecule means giant molecule
- 3 types of macromolecules in living organisms:

acids (polynucleotides) polysaccharides, proteins (polypeptides) and nucleic

'poly' means many; the above molecules are polymers, meaning that they are made of many

repeating subunits that are similar or identical to

each other

Monomers, polymers and macromolecules

- The subunits are referred to as monomers
- They're joined together like beads on a string
- Making polymers is relatively simple because the same reaction is repeated many times
- Industrially produced polymers include: polyester, Natural examples of polymers are cellulose and rubber
- polythene, PVC and nylon These are all made up of carbon-based monomers and contain thousands of carbon atoms joined end

to end

Carbohydrates

- All carbohydrates contain the elements carbon, hydrogen and oxygen
- 'hydrate' refers to water
- Hydrogen and oxygen atoms are present in the ratio of 2:1 in carbohydrates, as they are in water
- The **general formula** for a carbohydrate: $C_x(H_2O)_v$.
- Three main groups of carbohydrates: monosaccharides,
- disaccharides and polysaccharides
- 0 'saccharide" refers to a sugar or sweet substance

Monosaccharides

- Monosaccharides are sugars
- Sugars dissolve easily in water to form sweet-
- General formula: (CH₂O)_n
- Ο Consist of a **single** sugar molecule; 'mono'

means one

Monosaccharides

- 0 Main types of monosaccharides classified according to the number of carbon atoms in each molecule:
- Trioses (3C)
- Pentoses (5C)
- Common examples: ribose and deoxyribose
- Hexoses (6C)
- Common examples: glucose, fructose and galactose
- Names of all sugars end with -ose

Monosaccharides

- Molecular and structural formula
- Formula (aka molecular formula) for a hexose: C₆H₁₂O₆
- 0 Structural formula shows the arrangements of the atoms in a molecule

QUESTION

₆. What would be the formula of: The formula for a hexose is $C_6H_{12}O_6$, or (CH_2O)

a. a triose?

b. a pentose?

Figure 2.3, page 30

Ring structures

Pentoses and hexoses have long enough chains

of carbon atoms that they can close up on themselves and form more stable ring structures

Figure 2.4, page 30

Roles of monosaccharides in living organisms

- 2 Major functions:
- Commonly used as a source of energy in respiration due to the larger number of carbon-hydrogen bonds
- C-H bonds are broken to release energy which is triphosphate) from ADP (adenosine diphosphate) transferred to help make ATP (adenosine and phosphate
- Most important in energy metabolism is glucose

Roles of monosaccharides in living organisms

- Important as building blocks for larger molecules
- Example: glucose is used to make the polysaccharides starch, glycogen and cellulose
- Example: ribose (5C) is one of the molecules used to make RNA (ribonucleic acid) and ATP
- Example: Deoxyribose (5C) is one of the molecules used to make DNA

Disaccharides

- Disaccharides are sugars
- Three most common disaccharides
- Maltose (glucose + glucose)
- Sucrose (glucose + fructose)
- Transport sugar in plants and commonly bought in stores
- Lactose (glucose + galactose)
- Sugar found in milk and important in young

mammals diets

Forming disaccharides

- Formed when two monosaccharides are joined together
- process name is condensation
- *See Figure 2.5
- For each condensation reaction, two hydroxyl (-OH) groups line up alongside each other
- One combines with a hydrogen atom from the other to form a water molecule
- An oxygen 'bridge' forms between the two molecules, holding them together and forming a disaccharide
- 'di' means two
- The 'bridge' is called a glycosidic bond

Disaccharides

 since monosaccharides have many -OH groups, there are a large number of possible

disaccharides

- the shape of the enzyme controlling the reaction determines which -OH groups come alongside
- Few of the possible disaccharides are

each other

common in nature

Breaking disaccharides

- The reverse of condensation is the *addition* of water, which is known as hydrolysis
- Occurs during the digestion of disaccharides and

monosaccharides polysaccharides when they are broken down to