THE STRUCTURES OF THE CELL

BY: KAYLEE CRAWFORD, BAILEY WALKER AND PAUL VOLLAND

THE NUCLEUS

- The largest cell organelle, 10-20 um
- Contains DNA and regulates cell activities, produces mRNA and tRNA
- Parts:
- Nuclear Envelope: Double membrane that surrounds nucleus, outer membrane controls entry, exit, and rxns in cell
- Nuclear Pores: Around 3000 40-100 nm in diameter, regulate passage into nucleus
- Chromatin: Composed of DNA, when cell divides it becomes chromosomes
- Nucleolus: Manufactures and assembles ribosomal RNA

MITOCHONDRIA

- 1-7um in length, often sausage shaped
- Surrounded by 2 membranes inner form cristae that contain enzymes involved in aerobic respiration, and project into the interior solution called the matrix -outercontains a transport protien called porin and allows easy access of small water soluble molecules
- Cristae have a large surface area for oxidative phosphorylation which results in synthesis of ATP
- The matrix contains protein, lipids, 70s ribosomes, and small pieces of DNA, involved in krebs cycle
- Intermembrane space selective barrier

CHLOROPLASTS

- Only in plant cells
- Flat discs, 3-10um in diameter, 1 um thick
- Parts:
- Envelope: Double Membrane, entry and exit of substances
- Stroma: Gelatinous matrix, contains enzymes for photosynthesis, contains small piece of DNA, 70s ribosomes, and oil droplets
- Grana: Looks like stack of coins, 50/chloroplast, 100 stacked flattened sacks (thylakoids) each, attached to chlorophyll molecules, produce ATP

ENDOPLASMIC RETICULUN

- Smooth ER don't have ribosomes on surface and store/transport lipids and steroids such as cholesterol, typically more tubular
- Rough ER have ribosomes on their surface and synthesize proteins, are a pathway for transport of materials
- Pathway for transport (rough)
- Forms transport vesicles which are small membrane bound sacs for transportation

RIBOSOMES

- Spherical and found in cells80s found in prokaryotic
- Function: aerobic respiration (oxidative phosphorylation and krebs cycle) and synthesis of ATP molecules

GOLGI BODY

- Stack of membranes make up flattened sacs or cysternae
- Adds carbs to proteins to form glycoproteins
- Produces secretory enzymes
- Secretes carbohydrates
- Transports , modifies and stores lipids
- Forms primary lysosomes

CELL SURFACE MEMBRANE

- Controls movement of substances
- Partially permeable some substances can only cross on one occasion
- Helps form cell tissues
- Boundary between the cell cytoplasm and the environment
- Pn plant and animal cells. In animal cells, membrane folds to form microvilli to provide larger surface for absorbing substances
- 7-10nm in diameter

LARGE PERMANENT VACUOLE

Only in plant cells

Surrounded by tonoplast which contains cell sap

Stores water, ions, sugars, and pigments Pushes chloroplast to the edge of the cell and gives turgidity

- 70s found in prokaryotic and the mitochondria and chloroplasts of eukaryotic cells
- 1 small sub unit and 1 large which contain ribosomal DNA and protein
- make up 25% of the dry mass of a cell

LYSOSOMES

- Single membrane formed when vesticles are produced by the golgi body
- Destroy foreign material
- Digest worn out organelles
- Breaks down dead cells
- Some release hydrolytic enzymes

CELL WAL

- Provides mechanical strength, prevents cell from bursting
- Strength for whole plant
- Allows movement of water through plant
- Contain a number of polysaccharides such as cellulose hemicellulose and pectin
 CENTRIOLES AND MICROTUBULES
- In animal cells,algae and fungi
- Cylinder, 0.5 um in length, 0.2 um in diameter
- Nine sets of three microtubules
- Microtubules form spindle fibres during nuclear division
- Convert to basalt bodies, organize Microtubules to form cilia and flagella
- Responsible for the movement and
 - positioning of organelles
- Involved in movement of cell